All You Need to Know About Cantilever Beam

reinforced concrete contractors

A cantilever beam is a strong structure used in construction. It is supported at one end and the other end is free of any external support. It is a unique design of beams used in construction. In this article, you will get an idea of the cantilever beam. You will understand how it can carry loads without support on the other end. In this discussion, you will learn what bending moment and shear forces are required for a cantilever beam.

What is a cantilever beam?

A cantilever beam is a unique structural element. It is a horizontal beam that extends its arm to carry loads. A cantilever beam is only supported at one end. The unsupported part of the beam is called the cantilever. It often extends beyond the support point. If the cantilever beam is not constructed with proper engineering calculations, it may fail to carry the loads. Building contractors and engineers carefully design a cantilever beam. They should ensure that the unsupported portion is substantial enough to hold the weight of the building. A powerfully built cantilever beam improves the aesthetic appeal of a building or structure. In modern construction, this type of beam showcases engineering advancement.

What is the shear force and bending moment for a cantilever beam?

Shear force and bending moment are crucial elements to design a cantilever beam. Shear force is the force that acts parallel to the surface of the cantilever beam. The total load on a cantilever beam equals the total shear force. On the other hand, a bending moment is a measurement of force that causes a structural element to bend. For cantilever beams, the bending moment is the total of moments between the section and the beam's free end. The design of a cantilever beam depends on shear forces and bending moment. Similarly, construction elements used in cantilevers impact their capability to carry loads.

How are cantilever beams designed?

The can believer beams may be vulnerable to deflection, shear forces, and bending moments. Bending moment and shear forces occur at the supported part of the beam. Alternatively, the maximum deflection happens at the unsupported part of the beam. In engineering, deflection refers to the movement of a beam from its original position. The total load affects the deflection of a beam in a building. Hence, the design process of the cantilever beam is tricky. Engineers calculate the total load and length of the cantilever beam for its design. Depending on these factors, a reinforced concrete cantilever beam will be constructed. The higher the load, the stronger the cantilever beam will be. More reinforcement will be required. A cantilever can also be made of steel or concrete, depending on the load these beams must carry.

Where are the cantilever beams used the most?

The cantilever beam's unit design makes it suitable for modern construction. It is used in roofs, balconies, stadium roofs, bridges, etc. The cantilever mechanism is also used in cranes. A cantilever supports the midsection of a bridge. The Forth Bridge is a great example of a cantilever bridge in Scotland. Temporary cantilever beams are also used during building construction. They help support the structure of the building and can easily be removed when the work is done.

Advantages and disadvantages of cantilever beam

If you do not consider the engineering point of view, a cantilever beam improves the aesthetic appeal of a building. It reflects engineering expertise. That being said, cantilever beams are more accessible to construct. It is a better option to compensate for negative bending moments with positive bending moments. In building bridges, cantilever beams provide support without scaffolding work. On the other hand, a cantilever is often not regarded as an economical truss. This type of structure is also vulnerable to large deflection.

Conclusion

Cantilever beams are an excellent option for supporting roofs, balconies, and other structures. They are also used in bridges and large cranes. However, a cantilever beam is vulnerable to large deflection at its unsupported end. At the same time, the supported part is susceptible to shear force and bending moments. Engineers calculate the total load cantilever beams are to carry and construct these beams accordingly. If you use cantilever beams in your building, it may also improve its aesthetic appeal. However, you should contact a professional contractor. Contact Reinforced Concrete Contractors today for your residential construction project. We offer a free quotation and excellent service.